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Abstract As an important organic compound, chiral

alcohols are the key chiral building blocks to many single

enantiomer pharmaceuticals. Asymmetric reduction of the

corresponding prochiral ketones to produce the chiral

alcohols by biocatalysis is one of the most promising

routes. Asymmetric reduction of different kinds of non-

natural prochiral ketones catalyzed by various plants tissue

was studied in this work. Acetophenone, 40-chloroaceto-

phenone and ethyl 4-chloroacetoacetate were chosen as the

model substrates for simple ketone, halogen-containing

aromatic ketone and b-ketoesters, respectively. Apple

(Malus pumila), carrot (Daucus carota), cucumber (Cuc-

umis sativus), onion (Allium cepa), potato (Soanum

tuberosum), radish (Raphanus sativus) and sweet potato

(Ipomoea batatas) were chosen as the biocatalysts. It was

found that these kinds of prochiral ketoness could be

reduced by these plants tissue with high enantioselectivity.

Both R- and S-form configuration chiral alcohols could be

obtained. The e.e. and chemical yield could reach about 98

and 80% respectively for acetophenone and 40-chloroace-

tophenone reduction reaction with favorable plant tissue.

And the e.e. and yield for ethyl 4-chloroacetoacetate

reduction reaction was about 91 and 45% respectively.
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Introduction

Because of safety, therapeutics and regulatory concerns,

there has been increasing interests in the development of

processes capable of producing enantiomerically pure

drugs [1, 2]. The enantiomerically pure pharmaceuticals

are ordinary synthesized from the chiral building blocks,

which is usually produced through chemical catalysis or

biocatalysis. Chiral alcohols are one kind of the most

important chiral building blocks for numerous chiral

pharmaceuticals due to their unique structure property

[2–5]. Asymmetric reduction of the corresponding prochi-

ral ketones is one of the effective and promising routes to

manufacture chiral alcohols [6]. Biocatalysis, involving

either isolated oxido-reductases or living organisms, is

always regarded as one of the most promising method due

to its outstanding enantioselectivity, mild reaction condi-

tions and environment-friendly [7–9]. In this case, whole

cell is an excellent alternative to the isolated enzyme, since

the oxido-reductase, cofactor (NAD(P)H) and its regener-

ate system all locate within cell, and the addition of the

expensive cofactor can be avoided [4, 10, 11]. There are

extensive works on the asymmetric reduction reaction

catalyzed by whole cell with excellent enantioselectivity

and yield [4, 6, 11]. However, the previous reported works

mainly focus on application microbial organism as the

biocatalyst [11–16].

Moreover, plant cell is another potential biocatalyst,

since diverse oxido-reductases and the cofactor regenera-

tion system exist in the plant cell. Unfortunately, there are
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few reports about the biotransformation catalyzed by plant

cell [17–22]. But the previous reported works is mainly

concentrated on natural substrates. Excellent results are

obtained in natural ketones reduction, since they are easily

accepted by plant cell [18–22]. However the asymmetric

reduction reaction of non-natural prochiral ketone cata-

lyzed by plant tissue or cell was rarely reported, which is

very valuable to both theoretical research and practical

application. The objective of this study is to explore the

asymmetric reduction of different kinds of simple prochiral

ketones catalyzed by various plants tissue. Acetophenone,

40-chloroacetophenone and ethyl 4-chloroacetoacetate was

chosen as the model substrate for simple ketones, halogen-

containing aromatic ketones and b-ketoesters, respectively.

Apple (Malus pumila), carrot (Daucus carota), cucumber

(Cucumis sativus), onion (Allium cepa), potato (Soanum

tuberosum), radish (Raphanus sativus) and sweet potato

(Ipomoea batatas) were chosen as the biocatalyst.

Materials and methods

Chemicals

Acetophenone and benzaldehyde were purchased from

China Medicine Shanghai Chemical Reagent Corporation

(China), analytical reagent. R- and S-1-phenylethanol,

ethyl 4-chloroacetoacetate, ethyl S- 4-chloro-3-hydroxy-

butyrate, and ethyl R- 4-chloro-3-hydroxybutyrate were

purchased from ACROS Organic In. (New Jersey, USA),

lab reagent grade. 40-chloroacetophenone, R- and S-1-(4-

chloro-phenyl)ethanol was purchased from Fluka Chemia

In., analytical reagent. Ethyl acetate and other reagents

were of analytical reagent and commercially available.

Plant tissue

Fresh apple (M. pumila), carrot (D. carota), cucumber (C.

sativus), onion (A. cepa), potato (S. tuberosum), Radish (R.

sativus) and sweet potato (I. batatas) were obtained from a

local market. To increase the contact of the substrate with

the biocatalyst, the external layer of the plants was

removed and the rest was carefully cut into small thin

pieces (approximately 1 cm long slice).

General procedure for the asymmetric reduction

of ketones with various plants tissue

A certain amount of substrate (the final concentration was

10 mmol/L) were added to a suspension of freshly cut plant

tissue (15 g) in 40 mL of water, and the reaction mixture

was incubated in an orbital shaker operating at 150 r/min

and 30 �C for a certain period (for example 50 h) to obtain

a appropriate conversion. Finally, the reaction mixture was

extracted with ethyl acetate (1:1). The organic phase was

dried with anhydrous Na2SO4. Then chemical yield and

enantioselectivity were determined. Each experiment was

parallelly repeated at least three times. Then the average

value and standard deviations were given.

Analysis

The concentrations of acetophenone, R- and S-1-phenyleth-

anol, 40-chloroacetophenone, and R- and S-1-(4-chloro-

phenyl)ethanol were determined with a gas chromatograph

(Model 6890, Agilent Technologies Co., Ltd) equipped with a

chiral Cyclodex-B capillary column (0.25 mm 9 30 m, Ag-

ilent Technologies Co., Ltd). Benzaldehyde was applied as the

internal standard substance. The conditions of gas chro-

matograph were: N2 as the carrier gas at 3.5 mL/min of flow

rate, splitting ratio 50:1, flame ionization detector (FID). The

temperature of injector and FID were both 250 �C. The oven

temperature for acetophenone, and R- and S-1-phenylethanol

was 90 �C for 5 min, increasing from 90 to 180 �C at speed

of 15 �C/min and keeping at 180 �C for 2 min. And it for

40-chloroacetophenone, and R- and S-1-(4-chloro-phenyl)

ethanol was 120 �C for 5 min, increasing from 120 to 190 �C

at speed of 9 �C/min and keeping at 190 �C for 5 min. The

retention time of acetophenone, R-1-phenylethanol and S-1-

phenylethanol was 13.08, 14.43 and 14.59 min, respectively.

And the retention time of 40-chloroacetophenone, R-1-(4-

chloro-phenyl)ethanol and S-1-(4-chloro-phenyl)ethanol

was 15.41, 15.74 and 15.93 min, respectively.

The analytical approach of ethyl 4-chloroacetoacetate

reduction reaction was the same as our previous work [14].

The reaction degree and the enantioselectivity were

indicated by ‘‘yield’’ (chemical yield) and ‘‘e.e.’’ (enan-

tiomeric excess) respectively, which were defined as:

Yield ¼ CP

C0

� 100%; ð1Þ

e:e: ¼ CS � CR

CS þ CR

�
�
�
�

�
�
�
�
� 100% ð2Þ

C0 initial substrate concentration

CP final product concentration

CS final S-form product concentration

CR final R-form product concentration.

Results and discussion

Asymmetric reduction reactions of acetophenone, 40-chlo-

roacetophenone and ethyl 4-chloroacetoacetate by various
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plants tissue were investigated. Apple (M. pumila), carrot

(D. carota), cucumber (C. sativus), onion (A. cepa), potato

(S. tuberosum), radish (R. sativus) and sweet potato (I.

batatas) were selected as the biocatalysts. The reaction was

shown in Scheme 1. And the reaction time was 50 and

100 h.

Acetophenone

Acetophenone is a preferred model substrate of simple

ketone and aromatic ketone for asymmetric reaction. The

results of asymmetric reduction of acetophenone by vari-

ous plants tissue was given in Table 1, indicated that

acetophenone could be reduced to chiral 1-phenylethanol

with attractive enantioselectivity and chemical yield.

S-form and R-form product (1-phenylethanol) were all

obtained by the asymmetric reduction reaction catalyzed by

different plants tissue. Except for potato (S. tuberosum), the

reaction reached the equilibrium within 50 h. The best

results can be obtained by the action of carrot (D. carota)

and potato (S. tuberosum) in terms of the yield and e.e..

The yield and e.e. are 79.2 and 96.4% respectively cata-

lyzed by carrot (D. carota). And that are 51.4 and 92.1%

for potato (S. tuberosum). The product of the reaction

catalyzed by carrot (D. carota) is in S-form configuration,

which is in agreement with Prelog’s rule. It is consistent to

Yadav’s results in their work of reduction of different

ketones with carrot [17]. On the contrary, it is R-form

configuration catalyzed by potato (S. tuberosum), which

follows anti-Prelog’s rule. Compared with the results of

catalyzed by microbe cell (such as yeast cell), the results

are attractive [4, 12, 23].

40-chloroacetophenone

The single enantiomer of halogen-containing aromatic

alcohols is one of the most important kinds of chiral

building blocks for many enantiomerically pure pharma-

ceuticals, such as L-chlorprenaline, R-tomoxetine,

S-fluoxetine, R-salbutamol, and R-denopamine [24]. These

chiral alcohols can be synthesized by asymmetric reduction

of the corresponding prochiral halogen-containing aromatic

ketones. To investigate the asymmetric reduction of the

halogen-containing aromatic ketones catalyzed by plants

tissue, 40-chloroacetophenone was chosen as the model

substrate, since it posses the general peculiarities of this

kind of ketones. Moreover, the products, R- or S-1-(4-

chloro-phenyl)ethanol, are key chiral intermediates for

many chiral drugs [24]. The results were shown in Table 2.

It was observed that the reaction results of asymmetric

reduction of 40-chloroacetophenone by these plants tissue is

similar to that of acetophenone. Even more interesting is

that the enantioselectivity and yield are C90 and C50%

respectively to most plants tissue, remarkably higher than

that of the acetophenone reduction reaction. That indicates

that halogen-containing aromatic ketone is more acceptable

to plant cells than simple aromatic ketone. And the chlorine

bond on the phenyl group enlarges the difference between

the two groups on both sides of the carbonyl, therefore

improving the enantioselectivity of this reduction reaction.

The results show that it is with potential practical appli-

cation value.

Ethyl 4-chloroacetoacetate

Reduction of b-ketoesters is probably the most extensively

studied in asymmetric reduction of prochiral ketones to

chiral alcohols catalyzed by microbe organism [25]. Ethyl

4-chloroacetoacetate was chosen as the model substrate for

R1 R2

O

R1 R2 R1 R2
or

Cofactor
Recycling

co-substrate

Plant tissue

NADH NAD+

by-product

OH OH

simple ketone
halogen aromatic ketone 
β-ketoester

Scheme. 1 Asymmetric reduction of ketones catalyzed by plants

tissue

Table 1 Asymmetric reduction

of acetophenone by various

plants tissue

Entry Plant tissue 50 h 100 h Config.

Yield/% e.e./% Yield/% e.e./%

1 Apple (M. pumila) 38.7 ± 2.1 82.5 ± 2.5 40.9 ± 1.5 81.5 ± 2.7 R

2 Carrot (D. carota) 78.4 ± 2.6 95.0 ± 2.9 79.2 ± 2.0 96.4 ± 1.9 S

3 Cucumber (C. sativus) 50.5 ± 1.5 75.2 ± 3.1 55.5 ± 1.8 75.8 ± 3.2 S

4 Onion (A. cepa) 52.7 ± 1.8 74.2 ± 2.6 54.3 ± 1.4 73.8 ± 2.9 S

5 Potato (S. tuberosum) 28.0 ± 2.3 93.7 ± 2.8 51.4 ± 2.2 92.1 ± 3.4 R

6 Radish (R. sativus) 71.9 ± 1.7 70.6 ± 3.8 82.3 ± 2.5 72.8 ± 2.8 S

7 Sweet potato (I. batatas) 42.5 ± 2.4 80.0 ± 3.4 43.5 ± 1.9 80.2 ± 2.9 R
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b-ketoesters, and its asymmetric reduction catalyzed by

plants tissue was investigated. The product chemical yield

and enantioselectivity of the reduction reaction were shown

in Table 3. The results coincide with Yadav’s results in

investigation on the reduction of other b-ketoesters with

D. carota root [17]. The results indicated that the product is

mainly S-form configuration excessive (i.e. ethyl (S)-(-)-4-

Chloro-3-Hydroxybutanoate) except catalyzed by onion

(A. cepa). The best result was obtained with using carrot

(D. carota) as the biocatalyst. The yield and e.e. are not so

excellent compared with aromatic ketone reduction, but

yield and e.e. are comparable to those of catalyzed by

microbe [26]. The yield and e.e. could reach to 45.5 and

91.0% respectively.

Conclusions

This work indicates that like natural ketones the non-natural

prochiral ketones (simple ketones, halogen-containing aro-

matic ketones and b-ketoesters) can also be reduced to chiral

alcohols by various plants tissue with excellent enantiose-

lectivity. Acetophenone, 40-chloroacetophenone and ethyl 4-

chloroacetoacetate as the corresponding model substrates

can be effectively reduced to the corresponding chiral

alcohols by the applied plants tissue, i.e. apple (M. pumila),

carrot (D. carota), cucumber (C. sativus), onion (A. cepa),

potato (S. tuberosum), radish (R. sativus) and sweet potato

(I. batatas). Moreover, both R- and S-form configuration

chiral alcohols could be obtained through these asymmetric

reduction reactions. The reaction properties of reduction

acetophenone and 40-chloroacetophenone are similar. How-

ever, the results of reduction 40-chloroacetophenone is more

attractive in term of the chemical yield and e.e.. The reason

is that halogen-containing aromatic ketone is more accept-

able to plant cells than simple aromatic ketone. The

favorable plants tissue to acetophenone and 40-chloroaceto-

phenone are carrot(D. carota) and potato(S. tuberosum)

based on the chemical yield and e.e.. The configurations of

the corresponding chiral alcohol are S-form and R-form

respectively. To ethyl 4-chloroacetoacetate reduction reac-

tion, the e.e. and yield were not so satisfactory compared

with acetophenone and 40-chloroacetophenone. However,

with the favorable plants tissue, carrot(D. carota), the e.e.

and yield can reach about 91 and 45%. This provides a new

route to produce chiral alcohols, as the platform chemicals

for enantiomerically pure pharmaceuticals, through asym-

metric reduction of the corresponding simple prochiral

ketones.
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Table 2 Asymmetric reduction

of 40-chloroacetophenone by

various plants tissue

Entry Plant tissue 50 h 100 h Config.

Yield/% e.e./% Yield/% e.e./%

8 Apple (M. pumila) 59.2 ± 1.2 92.4 ± 1.6 65.2 ± 1.9 93.1 ± 1.9 R

9 Carrot (D. carota) 41.7 ± 1.6 99.0 ± 0.8 42.6 ± 1.1 98.2 ± 1.7 S

10 Cucumber (C. sativus) 70.4 ± 1.3 94.1 ± 1.6 72.4 ± 2.0 93.1 ± 1.8 S

11 Onion (A. cepa) 57.7 ± 2.0 89.0 ± 1.8 74.5 ± 2.6 90.0 ± 2.9 S

12 Potato (S. tuberosum) 50.1 ± 1.7 99.1 ± 0.9 62.6 ± 1.9 98.6 ± 1.4 R

13 Radish (R. sativus) 55.1 ± 1.8 89.2 ± 2.6 72.4 ± 2.1 90.2 ± 2.1 S

14 Sweet potato (I. batatas) 53.1 ± 1.9 93.6 ± 1.2 53.1 ± 2.4 93.0 ± 1.8 R

Table 3 asymmetric reduction

of ethyl 4-chloroacetoacetate by

various plants tissue

Entry Plant tissue 50 h 100 h Config.

Yield/% e.e./% Yield/% e.e./%

15 Apple (M. pumila) 25.4 ± 2.6 85.3 ± 2.1 28.4 ± 2.8 88.3 ± 3.6 S

16 Carrot (D. carota) 39.6 ± 2.3 90.1 ± 2.2 45.5 ± 2.2 91.0 ± 2.1 S

17 Cucumber (C. sativus) 35.7 ± 2.9 75.3 ± 2.9 37.7 ± 2.7 73.3 ± 2.9 S

18 Onion (A. cepa) 48.8 ± 2.1 70.6 ± 3.6 56.0 ± 3.4 76.6 ± 3.4 R

19 Potato (S. tuberosum) 24.6 ± 3.4 58.4 ± 2.4 29.6 ± 2.9 60.4 ± 3.2 S

20 Radish (R. sativus) 21.0 ± 3.6 68.7 ± 2.9 31.2 ± 3.1 65.7 ± 2.7 S

21 Sweet potato (I. batatas) 36.0 ± 2.7 82.4 ± 3.6 46.7 ± 2.4 80.4 ± 3.3 S
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